Technology

A break up influenza vaccine formulated with a mixture adjuvant composed of alpha-d-glucan nanoparticles and a STING agonist elicits cross-protective immunity in pigs | Journal of Nanobiotechnology


  • Mancera Gracia JC, Pearce DS, Masic A, Balasch M. Influenza A virus in swine: epidemiology, challenges and vaccination methods. Entrance Vet Sci. 2020;7:647.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayward AC, Wang L, Goonetilleke N, Fragaszy EB, Bermingham A, Copas A, et al. Pure T cell-mediated safety towards seasonal and pandemic influenza. Outcomes of the flu watch cohort examine. Am J Respir Crit Care Med. 2015;191:1422–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sridhar S, Begom S, Bermingham A, Hoschler Ok, Adamson W, Carman W, et al. Mobile immune correlates of safety towards symptomatic pandemic influenza. Nat Med. 2013;19:1305–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Epstein SL, Worth GE. Cross-protective immunity to influenza A viruses. Professional Rev Vaccines. 2010;9:1325–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morgan SB, Hemmink JD, Porter E, Harley R, Shelton H, Aramouni M, et al. Aerosol supply of a candidate common influenza vaccine reduces viral load in pigs challenged with pandemic H1N1 virus. J Immunol. 2016;196:5014–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiremath J, Kang KI, Xia M, Elaish M, Binjawadagi B, Ouyang Ok, et al. Entrapment of H1N1 influenza virus derived conserved peptides in PLGA nanoparticles enhances T cell response and vaccine efficacy in pigs. PLoS ONE. 2016;11: e0151922.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talker SC, Stadler M, Koinig HC, Mair KH, Rodriguez-Gomez IM, Graage R, et al. Influenza A virus an infection in pigs attracts multifunctional and cross-reactive T cells to the lung. J Virol. 2016;90:9364–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patil V, Hernandez-Franco JF, HogenEsch H, Renukaradhya GJ. Alpha-d-glucan-based vaccine adjuvants: present standing and future views. Entrance Immunol. 2022;13: 858321.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu F, Mencia A, Bi L, Taylor A, Yao Y, HogenEsch H. Dendrimer-like alpha-d-glucan nanoparticles activate dendritic cells and are efficient vaccine adjuvants. J Management Launch. 2015;204:51–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samms KA, Alkie TN, Jenik Ok, de Jong J, Klinger KM, DeWitte-Orr SJ. Oral supply of a dsRNA-Phytoglycogen nanoparticle advanced enhances each native and systemic innate immune responses in rainbow trout. Fish Shellfish Immunol. 2022;121:215–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alkie TN, de Jong J, Jenik Ok, Klinger KM, DeWitte-Orr SJ. Enhancing innate antiviral immune responses in rainbow trout by double stranded RNA delivered with cationic phytoglycogen nanoparticles. Sci Rep. 2019;9:13619.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patil V, Renu S, Feliciano-Ruiz N, Han Y, Ramesh A, Schrock J, et al. Intranasal supply of inactivated influenza virus and poly(I:C) adsorbed corn-based nanoparticle vaccine elicited strong antigen-specific cell-mediated immune responses in maternal antibody optimistic nursery pigs. Entrance Immunol. 2020;11: 596964.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renu S, Feliciano-Ruiz N, Patil V, Schrock J, Han Y, Ramesh A, et al. Immunity and protecting efficacy of mannose conjugated chitosan-based influenza nanovaccine in maternal antibody optimistic pigs. Entrance Immunol. 2021;12: 584299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan Y, Ng SW, Singh SK, Gulati M, Gupta G, Chaudhary SK, et al. Revolutionizing polymer-based nanoparticle-linked vaccines for concentrating on respiratory viruses: a perspective. Life Sci. 2021;280: 119744.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhakal S, Renukaradhya GJ. Nanoparticle-based vaccine growth and analysis towards viral infections in pigs. Vet Res. 2019;50:90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhakal S, Lu F, Ghimire S, Renu S, Lakshmanappa YS, Hogshead BT, et al. Corn-derived alpha-d-glucan nanoparticles as adjuvant for intramuscular and intranasal immunization in pigs. Nanomedicine. 2019;16:226–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renu S, Feliciano-Ruiz N, Lu F, Ghimire S, Han T, Schrock J, et al. A nanoparticle-poly(I:C) mixture adjuvant enhances the breadth of the immune response to inactivated influenza virus vaccine in pigs. Vaccines. 2020. https://doi.org/10.3390/vaccines8020229.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu F, Mosley YC, Rodriguez Rosales RJ, Carmichael BE, Elesela S, Yao Y, et al. Alpha-d-glucan nanoparticulate adjuvant induces a transient inflammatory response on the injection web site and targets antigen to migratory dendritic cells. NPJ Vaccines. 2017;2:4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopfner KP, Hornung V. Molecular mechanisms and mobile capabilities of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21:501–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernandez-Franco JF, Mosley YC, Franco J, Ragland D, Yao Y, HogenEsch H. Efficient and secure stimulation of humoral and cell-mediated immunity by intradermal immunization with a cyclic dinucleotide/nanoparticle mixture adjuvant. J Immunol. 2021;206:700–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen JR, Liu YM, Tseng YC, Ma C. Higher influenza vaccines: an trade perspective. J Biomed Sci. 2020;27:33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tseng YC, Wu CY, Liu ML, Chen TH, Chiang WL, Yu YH, et al. Egg-based influenza break up virus vaccine with monoglycosylation induces cross-strain safety towards influenza virus infections. Proc Natl Acad Sci USA. 2019;116:4200–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazirinejad R, Ahmadi Z, Kazemi Arababadi M, Hassanshahi G, Kennedy D. The organic capabilities, construction and sources of CXCL10 and its excellent half within the pathophysiology of a number of sclerosis. NeuroImmunoModulation. 2014;21:322–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reutner Ok, Leitner J, Mullebner A, Ladinig A, Essler SE, Duvigneau JC, et al. CD27 expression discriminates porcine T helper cells with functionally distinct properties. Vet Res. 2013;44:18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levine OS, Bloom DE, Cherian T, de Quadros C, Sow S, Wecker J, et al. The way forward for immunisation coverage, implementation, and financing. Lancet. 2011;378:439–48.

    Article 
    PubMed 

    Google Scholar
     

  • Facilities for Illness C, Prevention. Ten nice public well being achievements—worldwide, 2001–2010. MMWR Morb Mortal Wkly Rep. 2011;60:814–8.


    Google Scholar
     

  • Kenney RT, Frech SA, Muenz LR, Villar CP, Glenn GM. Dose sparing with intradermal injection of influenza vaccine. N Engl J Med. 2004;351:2295–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luster AD, Leder P. IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo. J Exp Med. 1993;178:1057–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gomez-Chiarri M, Hamilton TA, Egido J, Emancipator SN. Expression of IP-10, a lipopolysaccharide- and interferon-gamma-inducible protein, in murine mesangial cells in tradition. Am J Pathol. 1993;142:433–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Embgenbroich M, Burgdorf S. Present ideas of antigen cross-presentation. Entrance Immunol. 2018;9:1643.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khatri M, Dwivedi V, Krakowka S, Manickam C, Ali A, Wang L, et al. Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a possible animal mannequin for human H1N1 influenza virus. J Virol. 2010;84:11210–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The position of interleukin 6 throughout viral infections. Entrance Microbiol. 2019;10:1057.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velazquez-Salinas L, Pauszek SJ, Stenfeldt C, O’Hearn ES, Pacheco JM, Borca MV, et al. Elevated virulence of an epidemic pressure of vesicular stomatitis virus is related to interference of the innate response in pigs. Entrance Microbiol. 2018;9:1891.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Gorman WE, Huang H, Wei YL, Davis KL, Leipold MD, Bendall SC, et al. The break up virus influenza vaccine quickly prompts immune cells via Fcgamma receptors. Vaccine. 2014;32:5989–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodward JJ, Iavarone AT, Portnoy DA. c-di-AMP secreted by intracellular Listeria monocytogenes prompts a number sort I interferon response. Science. 2010;328:1703–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin L, Hill KK, Filak H, Mogan J, Knowles H, Zhang B, et al. MPYS is required for IFN response issue 3 activation and sort I IFN manufacturing within the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J Immunol. 2011;187:2595–601.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howard LM, Hoek KL, Goll JB, Samir P, Galassie A, Allos TM, et al. Cell-based methods biology evaluation of human AS03-adjuvanted H5N1 avian influenza vaccine responses: a section I randomized managed trial. PLoS ONE. 2017;12: e0167488.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen JD, Ray S, Ross TM. Break up inactivated COBRA vaccine elicits protecting antibodies towards H1N1 and H3N2 influenza viruses. PLoS ONE. 2018;13: e0204284.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moliva JI, Hossfeld AP, Sidiki S, Canan CH, Dwivedi V, Beamer G, et al. Selective delipidation of Mycobacterium bovis BCG permits direct pulmonary vaccination and enhances safety towards Mycobacterium tuberculosis. Mucosal Immunol. 2019;12:805–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright AK, Bangert M, Gritzfeld JF, Ferreira DM, Jambo KC, Wright AD, et al. Experimental human pneumococcal carriage augments IL-17A-dependent T-cell defence of the lung. PLoS Pathog. 2013;9:e1003274.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matthijs AMF, Auray G, Boyen F, Schoos A, Michiels A, Garcia-Nicolas O, et al. Efficacy of three modern bacterin vaccines towards experimental an infection with Mycoplasma hyopneumoniae. Vet Res. 2019;50:91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo Y, Van Nguyen U, de la Fe Rodriguez PY, Devriendt B, Cox E. F4+ ETEC an infection and oral immunization with F4 fimbriae elicits an IL-17-dominated immune response. Vet Res. 2015;46:121.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talker SC, Koinig HC, Stadler M, Graage R, Klingler E, Ladinig A, et al. Magnitude and kinetics of multifunctional CD4+ and CD8beta+ T cells in pigs contaminated with swine influenza A virus. Vet Res. 2015;46:52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kick AR, Amaral AF, Cortes LM, Fogle JE, Crisci E, Almond GW, et al. The T-cell response to sort 2 porcine reproductive and respiratory syndrome virus (PRRSV). Viruses. 2019. https://doi.org/10.3390/v11090796.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Pelsmaeker S, Devriendt B, De Regge N, Favoreel HW. Porcine NK cells stimulate proliferation of pseudorabies virus-experienced CD8(+) and CD4(+)CD8(+) T cells. Entrance Immunol. 2018;9:3188.

    Article 
    PubMed 

    Google Scholar
     

  • Franzoni G, Kurkure NV, Edgar DS, Everett HE, Gerner W, Bodman-Smith KB, et al. Evaluation of the phenotype and performance of porcine CD8 T cell responses following vaccination with reside attenuated classical swine fever virus (CSFV) and virulent CSFV problem. Clin Vaccine Immunol. 2013;20:1604–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenbaum P, Tchitchek N, Joly C, Rodriguez Pozo A, Stimmer L, Langlois S, et al. Vaccine inoculation route modulates early immunity and consequently antigen-specific immune response. Entrance Immunol. 2021;12: 645210.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: a overview on adjuvants in licensed vaccines. Semin Immunol. 2018;39:14–21.

    Article 
    PubMed 

    Google Scholar
     

  • de Jong SE, Olin A, Pulendran B. The affect of the microbiome on immunity to vaccination in people. Cell Host Microbe. 2020;28:169–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali A, Khatri M, Wang L, Saif YM, Lee CW. Identification of swine H1N2/pandemic H1N1 reassortant influenza virus in pigs. United States Vet Microbiol. 2012;158:60–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yassine HM, Khatri M, Zhang YJ, Lee CW, Byrum BA, O’Quin J, et al. Characterization of triple reassortant H1N1 influenza A viruses from swine in Ohio. Vet Microbiol. 2009;139:132–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yassine HM, Al-Natour MQ, Lee CW, Saif YM. Interspecies and intraspecies transmission of triple reassortant H3N2 influenza A viruses. Virol J. 2007;4:129.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhakal S, Hiremath J, Bondra Ok, Lakshmanappa YS, Shyu DL, Ouyang Ok, et al. Biodegradable nanoparticle supply of inactivated swine influenza virus vaccine offers heterologous cell-mediated immune response in pigs. J Management Launch. 2017;247:194–205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhakal S, Cheng X, Salcido J, Renu S, Bondra Ok, Lakshmanappa YS, et al. Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protecting immune response in pigs. Int J Nanomedicine. 2018;13:6699–715.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • What's your reaction?

    Leave A Reply

    Your email address will not be published. Required fields are marked *