Technology

Antibiofilm exercise of ultra-small gold nanoclusters towards Fusobacterium nucleatum in dental plaque biofilms | Journal of Nanobiotechnology


  • Ferrer MD, Mira A. Oral biofilm structure on the microbial scale. Traits Microbiol. 2016;24(4):246–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Traits Microbiol. 2018;26(3):229–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Genco RJ, Sanz M. Medical and public well being implications of periodontal and systemic ailments: an summary. Periodontol 2000. 2020;83(1):7–13.

    Article 
    PubMed 

    Google Scholar
     

  • Sakanaka A, Kuboniwa M, Shimma S, Alghamdi SA, Mayumi S, Lamont RJ, Fukusaki E, Amano A. Fusobacterium nucleatum metabolically integrates commensals and pathogens in oral biofilms. MSystems. 2022. https://doi.org/10.1128/msystems.00170-22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brennan CA, Garrett WS. Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nat Rev Microbiol. 2019;17(3):156–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Zhao L, Xu C, Zhou J, Wu Y. Fusobacterium nucleatum stimulates monocyte adhesion to and transmigration by means of endothelial cells. Arch Oral Biol. 2019;100:86–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang W, Jia Z, Tang D, Zhang Z, Gao H, He Ok, Feng Q. Fusobacterium nucleatum facilitates apoptosis, ROS technology, and inflammatory cytokine manufacturing by activating AKT/MAPK and NF-κB signaling pathways in human gingival fibroblasts. Oxid Med Cell Longev. 2019. https://doi.org/10.1155/2019/1681972.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol. 2015;23:141–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng DW, Dong X, Pan P, Chen KW, Fan JX, Cheng SX, Zhang XZ. Phage-guided modulation of the intestine microbiota of mouse fashions of colorectal most cancers augments their responses to chemotherapy. Curr Opin Microbiol. 2019;3(9):717–28.

    CAS 

    Google Scholar
     

  • Liu PF, Shi W, Zhu W, Smith JW, Hsieh SL, Gallo RL, Huang CM. Vaccination concentrating on floor FomA of Fusobacterium nucleatum towards bacterial co-aggregation: implication for remedy of periodontal an infection and halitosis. Vaccine. 2010;28(19):3496–505.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teles RP, Teles FRF. Antimicrobial brokers used within the management of periodontal biofilms: efficient adjuncts to mechanical plaque management? Braz Oral Res. 2009;23:39–48.

    Article 
    PubMed 

    Google Scholar
     

  • Jepsen Ok, Jepsen S. Antibiotics/antimicrobials: systemic and native administration within the remedy of delicate to reasonably superior periodontitis. Periodontol 2000. 2016;71(1):82–112.

    Article 
    PubMed 

    Google Scholar
     

  • Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S. Antimicrobial resistance: greater than 70 years of warfare between people and micro organism. Crit Rev Microbiol. 2020;46(5):578–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmadabadi HY, Yu Ok, Kizhakkedathu JN. Floor modification approaches for prevention of implant related infections. Colloids Surf B Biointerfaces. 2020;193:111116.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mas-Moruno C, Su B, Dalby MJ. Multifunctional coatings and nanotopographies: towards cell instructive and antibacterial implants. Adv Healthc Mater. 2019;8(1):1801103.

    Article 

    Google Scholar
     

  • Khdair A, Hamad I, Alkhatib H, Bustanji Y, Mohammad M, Tayem R, Aiedeh Ok. Modified-chitosan nanoparticles: novel drug supply programs enhance oral bioavailability of doxorubicin. Eur J Pharm Sci. 2016;93:38–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andretto V, Rosso A, Briançon S, Lollo G. Nanocomposite programs for exact oral supply of medication and biologics. Drug Deliv Transl Res. 2021;11(2):445–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slavin YN, Asnis J, Häfeli UO, Bach H. Steel nanoparticles: understanding the mechanisms behind antibacterial exercise. J Nanobiotechnol. 2017;15(1):1–20.

    Article 

    Google Scholar
     

  • Gu X, Xu Z, Gu L, Xu H, Han F, Chen B, Pan X. Preparation and antibacterial properties of gold nanoparticles: A evaluate. Environ Chem Lett. 2021;19(1):167–87.

    Article 
    CAS 

    Google Scholar
     

  • Guo Z, Chen Y, Wang Y, Jiang H, Wang X. Advances and challenges in metallic nanomaterial synthesis and antibacterial functions. J Mater Chem B. 2020;8(22):4764–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu M, Soliman MG, Solar X, Pelaz B, Feliu N, Parak WJ, Liu S. How entanglement of various physicochemical properties complicates the prediction of in vitro and in vivo interactions of gold nanoparticles. ACS Nano. 2018;12(10):10104–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin JC, Wu XJ, Xu J, Wang BB, Jiang FL, Liu Y. Ultrasmall silver nanoclusters: Extremely environment friendly antibacterial exercise and their mechanisms. Biomater Sci. 2017;5(2):247–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Ok, Xie J. Engineering ultrasmall metallic nanoclusters as promising theranostic brokers. Traits Chem. 2020;2(7):665–79.

    Article 
    CAS 

    Google Scholar
     

  • Niihori Y, Matsuzaki M, Pradeep T, Negishi Y. Separation of exact compositions of noble metallic clusters protected with blended ligands. J Am Chem Soc. 2013;135(13)):4946–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loynachan CN, Soleimany AP, Dudani JS, Lin Y, Najer A, Bekdemir A, Chen Q, Bhatia SN, Stevens MM. Renal clearable catalytic gold nanoclusters for in vivo illness monitoring. Nat Nanotechnol. 2019;14(9):883–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Ok, Setyawati MI, Leong DT, Xie J. Overcoming bacterial bodily defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact Mater. 2021;6(4):941–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Malkmes MJ, Jiang C, Wang P, Zhu L, Zhang H, Zhang Y, Huang H, Jiang L. Antibacterial mechanism and transcriptome evaluation of ultra-small gold nanoclusters instead of dangerous antibiotics towards Gram-negative micro organism. J Hazard Mater. 2021;416:126236.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, Liu W, Qin Z, Chen Y, Jiang H, Wang X. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjug Chem. 2018;29(9):3094–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu F, Liu Y, Yao Q, Wang Y, Fang X, Shen C, Li F, Huang M, Wang Z, Sand W. Supported atomically-precise gold nanoclusters for enhanced flow-through electro-Fenton. Environ Sci Technol. 2020;54(9)):5913–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen R, Qiao D, Wang P, Li L, Zhang Y, Yan F. Gold nanoclusters exert bactericidal exercise and improve phagocytosis of macrophage mediated killing of Fusobacterium nucleatum. Entrance Mater. 2021;8:549.

    Article 
    CAS 

    Google Scholar
     

  • Kang X, Chong H, Zhu M. Au 25 (SR) 18: the captain of the good nanocluster ship. Nanoscale. 2018;10(23):10758–834.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Ok, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7)):6904–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benarroch JM, Asally M. The microbiologist’s information to membrane potential dynamics. Traits Microbiol. 2020;28(4):304–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y, Feng W. Broad-spectrum antibacterial exercise of carbon nanotubes to human intestine micro organism. Small. 2013;9(16):2735–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Ok, Setyawati MI, Leong DT, Xie J. Observing antimicrobial course of with traceable gold nanoclusters. Nano Res. 2021;14(4):1026–33.

    Article 
    CAS 

    Google Scholar
     

  • Reygaert WC. An outline of the antimicrobial resistance mechanisms of micro organism. AIMS Microb. 2018;4(3):482.

    Article 
    CAS 

    Google Scholar
     

  • Wang M, Zhou X, Li Y, Dong Y, Meng J, Zhang S, Xia L, He Z, Ren L, Chen Z. Triple-synergistic MOF-nanozyme for environment friendly antibacterial remedy. Bioact Mater. 2022;17:289–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent type of bacterial life. Nat Rev Microbiol. 2016;14(9):563–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naha PC, Liu Y, Hwang G, Huang Y, Gubara S, Jonnakuti V, Simon-Soro A, Kim D, Gao L, Koo H. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano. 2019;13(5):4960–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran TD, Nguyen MT, Le HV, Nguyen DN, Truong QD, Tran PD. Gold nanoparticles as an impressive catalyst for the hydrogen evolution response. Chem Commun. 2018;54(27):3363–6.

    Article 
    CAS 

    Google Scholar
     

  • Alizadeh N, Salimi A. Multienzymes exercise of metals and metallic oxide nanomaterials: functions from biotechnology to drugs and environmental engineering. J Nanobiotechnol. 2021;19(1):1–31.

    Article 

    Google Scholar
     

  • Sheng J, Nguyen PT, Marquis RE. Multi-target antimicrobial actions of zinc towards oral anaerobes. Arch Oral Biol. 2005;50(8):747–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polak D, Ferdman O, Houri-Haddad Y. Porphyromonas gingivalis capsule‐mediated coaggregation as a virulence think about blended an infection with Fusobacterium nucleatum. J Periodontol. 2017;88(5):502–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao L, Giglio KM, Nelson JL, Sondermann H, Travis AJ. Ferromagnetic nanoparticles with peroxidase-like exercise improve the cleavage of organic macromolecules for biofilm elimination. Nanoscale. 2014;6(5):2588–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dryden MS, Cooke J, Salib RJ, Holding RE, Biggs T, Salamat AA, Allan RN, Newby RS, Halstead F, Oppenheim B. Reactive oxygen: a novel antimicrobial mechanism for concentrating on biofilm-associated an infection. J Glob Antimicrob Resist. 2017;8:186–91.

    Article 
    PubMed 

    Google Scholar
     

  • Stewart PS. Diffusion in biofilms. J Bacteriol. 2003;185(5):1485–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Ji H, Liu C, Bing W, Wang Z, Qu X. A multinuclear metallic complicated based mostly DNase-mimetic synthetic enzyme: matrix cleavage for combating bacterial biofilms. Angew Chem Int Ed Engl. 2016;128(36)):10890–4.

    Article 

    Google Scholar
     

  • Wang S, Nie X, Siddiqui Y, Wang X, Arora V, Fan X, Thumbigere-Math V, Chung M. Nociceptor neurons enlarge host responses to worsen periodontitis. J Dent Res. 2022. https://doi.org/10.1177/00220345211069956.

    Article 
    PubMed 

    Google Scholar
     

  • Diaz P, Zilm P, Rogers A. Fusobacterium nucleatum helps the expansion of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology. 2002;148(2):467–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marsh PD, Moter A, Devine DA. Dental plaque biofilms: communities, battle and management. Periodontol 2000. 2011;55(1):16–35.

    Article 
    PubMed 

    Google Scholar
     

  • Slots J. Periodontitis: details, fallacies and the long run. Periodontol 2000. 2017;75(1):7–23.

    Article 
    PubMed 

    Google Scholar
     

  • Sigusch BW, Engelbrecht M, Völpel A, Holletschke A, Pfister W, Schütze J. Full-mouth antimicrobial photodynamic remedy in fusobacterium nucleatum–contaminated periodontitis sufferers. J Periodontol. 2010;81(7):975–81.

    Article 
    PubMed 

    Google Scholar
     

  • Xi Y, Wang Y, Gao J, Xiao Y, Du J. Twin corona vesicles with intrinsic antibacterial and enhanced antibiotic supply capabilities for efficient remedy of biofilm-induced periodontitis. ACS Nano. 2019;13(12):13645–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu T, Solar J, Lei J, Fan Q, Tang X, Zhu G, Yan Q, Feng X, Shi B. An environment friendly remedy of biofilm-induced periodontitis utilizing Pt nanocluster catalysis. Nanoscale. 2021;13(42):17912–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Jong T, Bakker A, Everts V, Smit T. The intricate anatomy of the periodontal ligament and its improvement: Classes for periodontal regeneration. J Periodontal Res. 2017;52(6):965–74.

    Article 
    PubMed 

    Google Scholar
     

  • Track X, Zhu W, Ge X, Li R, Li S, Chen X, Track J, Xie J, Chen X, Yang H. A brand new class of NIR-II gold nanocluster‐based mostly protein biolabels for in vivo tumor‐focused imaging. Angew Chem Int Ed Engl. 2021;60(3):1306–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou C, Hao G, Thomas P, Liu J, Yu M, Solar S, Öz OK, Solar X, Zheng J. Close to-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew Chem Int Ed Engl. 2012;51(40)):10118–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu M, Xu J, Zheng J. Renal clearable luminescent gold nanoparticles: from the bench to the clinic. Angew Chem Int Ed Engl. 2019;58(13):4112–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khaneghah AM, Abhari Ok, Eş I, Soares MB, Oliveira RB, Hosseini H, Rezaei M, Balthazar CF, Silva R, Cruz AG. Interactions between probiotics and pathogenic microorganisms in hosts and meals: a evaluate. Traits Meals Sci Technol. 2020;95:205–18.

    Article 

    Google Scholar
     

  • Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic micro organism within the intestine. Nature. 2016;535(7610):85–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Lv J, Pan L, Zhang Y. Roles and functions of probiotic Lactobacillus strains. Appl Microbiol Biotechnol. 2018;102(19):8135–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giordani B, Parolin C, Vitali B. Lactobacilli as anti-biofilm technique in oral infectious ailments: a mini-review. Entrance Med Technol. 2021. https://doi.org/10.3389/fmedt.2021.769172.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carding S, Verbeke Ok, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the intestine microbiota in illness. Microb Ecol Well being Dis. 2015;26(1):26191.

    PubMed 

    Google Scholar
     

  • Li J, Cha R, Zhao X, Guo H, Luo H, Wang M, Zhou F, Jiang X. Gold nanoparticles treatment bacterial an infection with profit to intestinal microflora. ACS Nano. 2019;13(5):5002–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Zhao R, Wang B, Cai C, Zheng L, Wang H, Wang M, Ouyang H, Zhou X, Chai Z. The consequences of orally administered Ag, TiO2 and SiO2 nanoparticles on intestine microbiota composition and colitis induction in mice. NanoImpact. 2017;8:80–8.

    Article 

    Google Scholar
     

  • What's your reaction?

    Leave A Reply

    Your email address will not be published. Required fields are marked *