Technology

Scalable all-optical chilly damping of levitated nanoparticles


  • Millen, J., Monteiro, T. S., Pettit, R. & Vamivakas, A. N. Optomechanics with levitated particles. Rep. Prog. Phys. 83, 026401 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gonzalez-Ballestero, C., Aspelmeyer, M., Novotny, L., Quidant, R. & Romero-Isart, O. Levitodynamics: levitation and management of microscopic objects in vacuum. Science 374, eabg3027 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum floor state. Science 367, 892–895 (2020).

    Article 

    Google Scholar
     

  • Tebbenjohanns, F., Mattana, M. L., Rossi, M., Frimmer, M. & Novotny, L. Quantum management of a nanoparticle optically levitated in cryogenic free house. Nature 595, 378–382 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Magrini, L. et al. Actual-time optimum quantum management of mechanical movement at room temperature. Nature 595, 373–377 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Timberlake, C., Gasbarri, G., Vinante, A., Setter, A. & Ulbricht, H. Acceleration sensing with magnetically levitated oscillators above a superconductor. Appl. Phys. Lett. 115, 224101 (2019).

    Article 

    Google Scholar
     

  • Monteiro, F. et al. Drive and acceleration sensing with optically levitated nanogram lots at microkelvin temperatures. Phys. Rev. A 101, 053835 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ahn, J. et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol. 15, 89–93 (2020).

    Article 
    CAS 

    Google Scholar
     

  • van der Laan, F. et al. Sub-kelvin suggestions cooling and heating dynamics of an optically levitated librator. Phys. Rev. Lett. 127, 123605 (2021).

    Article 

    Google Scholar
     

  • Ranjit, G., Cunningham, M., Casey, Okay. & Geraci, A. A. Zeptonewton pressure sensing with nanospheres in an optical lattice. Phys. Rev. A 93, 053801 (2016).

    Article 

    Google Scholar
     

  • Hempston, D. et al. Drive sensing with an optically levitated charged nanoparticle. Appl. Phys. Lett. 111, 133111 (2017).

    Article 

    Google Scholar
     

  • Hebestreit, E., Frimmer, M., Reimann, R. & Novotny, L. Sensing static forces with free-falling nanoparticles. Phys. Rev. Lett. 121, 063602 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chauhan, A. Okay., Černotík, O. & Filip, R. Stationary Gaussian entanglement between levitated nanoparticles. New J. Phys. 22, 123021 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Brandão, I., Tandeitnik, D. & Guerreiro, T. Coherent scattering-mediated correlations between levitated nanospheres. Quantum Sci. Technol. 6, 045013 (2021).

    Article 

    Google Scholar
     

  • Kotler, S. et al. Direct commentary of deterministic macroscopic entanglement. Science 372, 622–625 (2021).

    Article 
    CAS 

    Google Scholar
     

  • de Lépinay, L. M., Ockeloen-Korppi, C. F., Woolley, M. J. & Sillanpää, M. A. Quantum mechanics–free subsystem with mechanical oscillators. Science 372, 625–629 (2021).

    Article 

    Google Scholar
     

  • Reimann, R. et al. Cavity-modified collective Rayleigh scattering of two atoms. Phys. Rev. Lett. 114, 023601 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Landig, R. et al. Quantum phases from competing short- and long-range interactions in an optical lattice. Nature 532, 476–479 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S., Yin, Z.-q & Li, T. Prethermalization and nonreciprocal phonon transport in a levitated optomechanical array. Adv. Quantum Technol. 3, 1900099 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Periwal, A. et al. Programmable interactions and emergent geometry in an array of atom clouds. Nature 600, 630–635 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bressi, G., Carugno, G., Onofrio, R. & Ruoso, G. Measurement of the Casimir pressure between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. et al. Robust geometry dependence of the Casimir pressure between interpenetrated rectangular gratings. Nat. Commun. 12, 600 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Quinn, T. J., Speake, C. C., Richman, S. J., Davis, R. S. & Picard, A. A brand new willpower of G utilizing two strategies. Phys. Rev. Lett. 87, 111101 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q. et al. Measurements of the gravitational fixed utilizing two unbiased strategies. Nature 560, 582–588 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kaufman, A. M. et al. Two-particle quantum interference in tunnel-coupled optical tweezers. Science 345, 306–309 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Endres, M. et al. Atom-by-atom meeting of defect-free one-dimensional chilly atom arrays. Science 354, 1024–1027 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Monteiro, F., Ghosh, S., Positive, A. G. & Moore, D. C. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity. Phys. Rev. A 96, 063841 (2017).

    Article 

    Google Scholar
     

  • Li, T. Basic Exams of Physics with Optically Trapped Microspheres (Springer, 2013).

  • Dania, L., Bykov, D. S., Knoll, M., Mestres, P. & Northup, T. E. Optical and electrical suggestions cooling of a silica nanoparticle levitated in a Paul entice. Phys. Rev. Analysis 3, 013018 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bang, J. et al. 5-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Phys. Rev. Analysis 2, 043054 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Delić, U. et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 122, 123602 (2019).

    Article 

    Google Scholar
     

  • Windey, D. et al. Cavity-based 3D cooling of a levitated nanoparticle by way of coherent scattering. Phys. Rev. Lett. 122, 123601 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Meyer, N. et al. Resolved-sideband cooling of a levitated nanoparticle within the presence of laser part noise. Phys. Rev. Lett. 123, 153601 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, D. J. et al. Measurement-based management of a mechanical oscillator at its thermal decoherence fee. Nature 524, 325–329 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tebbenjohanns, F., Frimmer, M., Militaru, A., Jain, V. & Novotny, L. Chilly damping of an optically levitated nanoparticle to microkelvin temperatures. Phys. Rev. Lett. 122, 223601 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rudolph, H., Hornberger, Okay. & Stickler, B. A. Entangling levitated nanoparticles by coherent scattering. Phys. Rev. A 101, 011804 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric suggestions cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article 

    Google Scholar
     

  • Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).

    Article 

    Google Scholar
     

  • Rieser, J. et al. Tunable light-induced dipole-dipole interplay between optically levitated nanoparticles. Science 377, 987–990 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tebbenjohanns, F., Frimmer, M. & Novotny, L. Optimum place detection of a dipolar scatterer in a targeted discipline. Phys. Rev. A 100, 043821 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hebestreit, E. et al. Calibration and vitality measurement of optically levitated nanoparticle sensors. Rev. Sci. Instrum. 89, 033111 (2018).

    Article 

    Google Scholar
     

  • Steixner, V., Rabl, P. & Zoller, P. Quantum suggestions cooling of a single trapped ion in entrance of a mirror. Phys. Rev. A 72, 043826 (2005).

    Article 

    Google Scholar
     

  • Bushev, P. et al. Suggestions cooling of a single trapped ion. Phys. Rev. Lett. 96, 043003 (2006).

    Article 

    Google Scholar
     

  • Iwasaki, M. et al. Electrical suggestions cooling of single charged nanoparticles in an optical entice. Phys. Rev. A 99, 051401 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cohadon, P. F., Heidmann, A. & Pinard, M. Cooling of a mirror by radiation stress. Phys. Rev. Lett. 83, 3174–3177 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Suggestions cooling of a cantilever’s elementary mode beneath 5 mK. Phys. Rev. Lett. 99, 017201 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum management of mechanical movement. Nature 563, 53–58 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gieseler, J., Quidant, R., Dellago, C. & Novotny, L. Dynamic rest of a levitated nanoparticle from a non-equilibrium regular state. Nat. Nanotechnol. 9, 358–364 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Yan, J., Yu, X., Han, Z. V., Li, T. & Zhang, J. On-demand meeting of optically-levitated nanoparticle arrays in vacuum. Preprint at https://arxiv.org/abs/2207.03641 (2022).

  • Debnath, S. et al. Demonstration of a small programmable quantum pc with atomic qubits. Nature 536, 63–66 (2016).

    Article 
    CAS 

    Google Scholar
     

  • de los Ríos Sommer, A., Meyer, N. & Quidant, R. Robust optomechanical coupling at room temperature by coherent scattering. Nat. Commun. 12, 276 (2021).

    Article 

    Google Scholar
     

  • Toroš, M., Delić, U. C. V., Hales, F. & Monteiro, T. S. Coherent-scattering two-dimensional cooling in levitated cavity optomechanics. Phys. Rev. Analysis 3, 023071 (2021).

    Article 

    Google Scholar
     

  • Rudolph, H., Delić, U., Aspelmeyer, M., Hornberger, Okay. & Stickler, B. A. Drive-gradient sensing and entanglement by way of suggestions cooling of interacting nanoparticles. Phys. Rev. Lett. 129, 193602 (2022).

    Article 

    Google Scholar
     

  • Kamba, M., Shimizu, R. & Aikawa, Okay. Optical chilly damping of impartial nanoparticles close to the bottom state in an optical lattice. Choose. Exp. 30, 26716–26727 (2022).

    Article 

    Google Scholar
     

  • Hebestreit, E. Thermal Properties of Levitated Nanoparticles. PhD thesis, ETH Zürich (2017).

  • What's your reaction?

    Leave A Reply

    Your email address will not be published. Required fields are marked *